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In this paper it is shown that elementary tools of Riemannian differential geometry can be successfully
used to explain the origin of Hamiltonian chaos beyond the usual picture of homoclinic intersections.
This approach stems out of first principles of mechanics and fundamental tools of Riemannian geometry.
Natural motions of Hamiltonian systems can be viewed as geodesics of the configuration-space manifold
M equipped with a suitable metric g;, and the stability properties of such geodesics can be investigated
by means of the Jacobi-Levi-Civita equation for geodesic spread. The study of the relationship between
chaos and the curvature properties of the configuration-space manifold is the main concern of the
present paper and is carried out by numerical simulations. Two different mechanisms for chaotic insta-
bility are found: (i) the trajectories are “scattered” by random encounters of regions of negative curva-
ture (either scalar or Ricci curvature—it depends on the averaging procedure adopted); (ii) the “bumpi-
ness” of (M,g;) yields oscillations of the Ricci curvature along the geodesics so that parametric reso-
nance makes them unstable also in regions of positive curvature. The geometric approach is intrinsically
nonperturbative because everything is well defined at any energy, i.e., quasi-integrability is not required
as in the case of classical perturbation theory. Therefore this approach is fit to describe the existence of
the strong-stochasticity threshold (SST) in high-dimensional Hamiltonian flows. This threshold refers to
a transition between weak and strong chaoticity of the dynamics and, correspondingly, between slow and
fast mixing in phase space. In view of applications to equilibrium and nonequilibrium statistical
mechanics, the SST appears as the transition feature of high dimensional Hamiltonian flows with the
greatest physical significance. As the SST concerns chaotic dynamical behaviors, its existence cannot be
understood within the framework of classical perturbation theory, whereas it is shown that the SST can
be related to some major geometrical change of the constant-energy surfaces of phase space. A clear-cut
distinction can be made between integrable and nonintegrable systems. Finally, a new meaning is given
to the standard algorithm to compute numerical Lyapunov exponents, and it is shown that Oseledets
multiplicative theorem is not necessary to justify it.
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I. INTRODUCTION

The subject of the present paper is nonlinear Hamil-
tonian dynamics in high-dimensional phase space. The
first historical motivation for the study of these systems
stems from celestial mechanics as it is witnessed by
Poincaré’s Methodes Nouvelles de la Mechanique Celeste
[1].

Motions of celestial bodies are regular, at least on our
observational time scales. Planetary orbits in our solar
system are mutually perturbed but regular. Therefore,
the analytical techniques developed to describe these sys-
tems assume from the beginning the physical evidence of
dynamical regularity. This is the physics one recognizes
behind the existing analytical tools to tackle nonlinear
Hamiltonian dynamics. The ensemble of these methods
is known as classical perturbation theory (CPT).

In the Méthodes Nouvelles one can find also a descrip-
tion of the structure of the orbits in the vicinity of hyper-
bolic points where the perturbative series are divergent
and where the so-called homoclinic intersections take
place [2]. This is the origin of Hamiltonian chaos. On
the other hand, CPT fails in quantitatively describing
these chaotic regions of phase space just because of the
divergence of perturbative series. (It could be argued
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that, for instance, Melnikov’s method [3] is of perturba-
tive character; anyway, at large perturbations or at high
dimensionality, it is not very useful.)

Since the beginning of the 1950s, CPT has undergone a
renewal of interest and a remarkable conceptual develop-
ment. This can be attributed to the birth of the
Kolmogorov-Arnold-Moser (KAM) theory which actual-
ly was a breakthrough.

CPT and thus KAM theory, too, deals with quasi-
integrable systems, i.e., those described by Hamiltonians
such as

H |
H(p,q)=Hy(p)+H,(p,q), p=-—r<<l. (1)
| Holl
Our experimental knowledge suggests that quasi-

integrability is a good approximation for the dynamical
behavior of planetary systems, satellites and so on, or for
the structure of magnetic surfaces in tokamaks (in ab-
sence of disruptions) or for the beam behavior of particle
accelerators, just to give some examples.

Conversely, ergodicity and mixing are generic empiri-
cal properties of the microscopic dynamics of condensed
matter (solids and fluids). For this reason a statistical
description is justified and effective.

Therefore celestial mechanics and statistical mechanics
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describe opposite dynamical situations. Moreover, while
the former usually deals with dilute few-body systems,
the latter describes dense N-body systems with N of the
order of the Avogadro number, so one would expect that
such a big difference must be reflected by their respective
descriptions of the dynamics.

A well-known theorem by Poincaré [1] and by Fermi
[4] excluded, under some general conditions, the ex-
istence of smooth integral invariants besides the energy at
N = 3. This implies that for generic nonintegrable sys-
tems, as in Eq. (1), the whole constant-energy surface in
phase space is topologically accessible.

This theorem seems to be responsible for the common
belief that the ergodic hypothesis at the basis of classical
statistical mechanics is correct [5]. Doubts about this
point of view have been raised independently by the
famous numerical experiment by Fermi, Pasta, and Ulam
(FPU) [6], and by the KAM theorem [7]. In the FPU ex-
periment no tendency toward equipartition of energy was
observed where it was expected, that is, in a chain of
linear oscillators coupled by a weak anharmonicity.

On the other hand, the KAM theorem pointed out that
a positive measure of invariant tori can survive even in
the presence of a nonintegrable perturbation, provided
that pu<p., with p. some critical amplitude. A lot of
work followed; it can be schematically summarized as fol-
lows.

From the analytical standpoint, it is now clear that the
estimates of the critical perturbation amplitude p, give
exceedingly small values; moreover, p, has a strong (at
least exponential [8]) dependence upon the number N of
degrees of freedom. Typically pu,~ exp(—N InN). So it
is doubtful whether the KAM theorem can have any
physical relevance even at few degrees of freedom, and al-
most certainly it does not represent a problem for the
foundations of statistical mechanics. A remarkable im-
provement of KAM theory started with Nekhoroshev
theorem [9]. This one deals with finite time stability of
regular orbits in phase space instead of infinite time sta-
bility as in the KAM theory. Again the perturbation am-
plitude p must be smaller than some critical value u, that
turns out very small, and the estimate of the lower bound
for the stability time 7=7,u ' exp[(1/u)?] drops down
to ~1 already at small N because y(N)~1/N [10].

From the numerical standpoint, after a pioneering
work on the dynamics of a chain of atoms coupled by a
Lennard-Jones potential [11], we know that some kind of
stochasticity threshold exists also for high-dimensional
Hamiltonian flows. Below this threshold (some critical
energy per degree of freedom) the motion is apparently
regular, while above the threshold the motion appears
chaotic and mixing. Moreover, this threshold seems in-
dependent (or at least weakly dependent) on N. Also in
the case of the FPU model something similar happens
[12] and this could seem to be an explanation of the result
by Fermi and collaborators. Such an explanation was al-
ready proposed in Ref. [13], where the results of the FPU
experiment were related with Kolmogorov’s theorem. In
fact, the lack of equipartition in the FPU experiment was
attributed to the nonfulfillment of some stochasticity con-
dition by the parameters chosen.

However, recent extensive numerical simulations [14]
have clearly shown that—within the energy range
explored —equipartition of energy is always attained in
the FPU model, and that what was called the stochastici-
ty threshold or equipartition threshold [12] in reality is a
strong-stochasticity threshold (SST). On the other hand,
at N =3 there is no topological obstruction to the com-
plete filling of phase space (Poincaré-Fermi theorem), and
nonergodicity of metrical origin is only possible below
the KAM threshold. As a consequence, physically
relevant phenomena are expected essentially from the
study of relaxation times or mixing rates.

At energies larger than the SST, fast relaxation and
fast mixing are observed. On the contrary, at energies
lower than the SST, very long relaxation times can be ob-
tained by reducing the energy of the initial excitation;
anyway, the largest Lyapunov exponent A, is always
found positive, which means that some chaoticity is al-
ways present.

A crossover in the scaling behavior of A,(¢)—where €
is the energy per degree of freedom—provides the opera-
tional definition of the SST. The strongly chaotic regime
corresponds to A;(e)~&2/3. This can be explained with a
random matrix approximation for the tangent dynamics
[14]. At variance, the weakly chaotic regime corresponds
to a steeper law: A,(g) ~ €2

Measuring small A, requires very long integration
times [14]. Sometimes erroneous conclusions can be
drawn by insufficiently long runs yielding A,~¢ 1%,
a << 1, during very long trappings of the trajectories (see
Sec. III of this paper).

It is by no means surprising that A, is always positive
for a nonintegrable system. In fact, the intersection of
the resonant manifolds of H, with the constant-energy
surface originates a complex, connected, and dense net-
work in phase space, which is transformed into a stochas-
tic web by an arbitrary weak perturbation H,. But even
if A,(e)>0 at any energy €, and even in the hypothesis
that the overwhelming majority of the phase-space trajec-
tories is chaotic, still the topology of phase-space paths
can change a lot by varying the energy. In fact the SST is
ascribed to a transition from slow diffusion in phase space
(in the language of resonances this means that diffusion
mainly occurs along resonances), to fast diffusion across
resonances.

This kind of transition is global (it does not depend on
the initial condition) and so is intrinsically nonperturba-
tive, i.e., it is not explained by the existing results of CPT,
as already discussed in Ref. [14]. In fact, quasi-
integrability—assumed from the very beginning in
CPT—is not a reasonable global property of systems
whose phase space is mostly chaotic (of course a local
perturbative description is always allowed on a time scale
much shorter than the dynamical instability time).

It is worth noticing that a numerical work [15] on the
classical dynamics of the Heisenberg planar XY model
suggests that existence of an intriguing relationship be-
tween the SST and the dynamical counterpart of phase
transitions. In fact a SST is found at the critical tempera-
ture T,, at which the system undergoes a Kosterlitz-
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Thouless phase transition; here the threshold is given by
a crossover in the scaling of A,(T').

This is to say that the dynamical properties of high-
dimensional Hamiltonian flows have possibly a wider in-
terest to equilibrium statistical mechanics than the ergod-
ic problem at its foundations.

In the present paper we investigate the possibility of
describing the chaotic component of phase space by
means of elementary tools of Riemannian differential
geometry. The aim is mainly twofold: (i) to suggest an
explanation of the existence of the SST, and (ii) to pro-
vide, at least in principle, a statistical-mechanical algo-
rithm to compute this threshold.

The idea of looking at Riemannian differential
geometry as an analytical alternative to CPT comes from
the observation that the only theoretical framework deal-
ing with the opposite situation to quasi-integrability is er-
godic theory. An important contribution to this topic was
given by Krylov. He realized how tightly the mixing pro-
cesses of statistical systems are related to the exponential
instability of the underlying dynamics [16]. Moreover,
Krylov knew the works by Hadamard [17], Hedlund [18],
and Hopf [19] on the stability properties of the geodesics
of compact Riemannian manifolds with constant negative
curvature, and he was the first physicist who grasped the
relevance of these mathematical works for the under-
standing of phase-space mixing.

The follow-up of Krylov’s ideas took place within the
ergodic theory, with the fundamental contributions by
Anosov, Sinai, and others on geodesic flows [20], whereas
generic Hamiltonian flows, for instance like the FPU
model, have not been touched by these methods with
only few exceptions [21]. In what follows we show how
Krylov’s original intuitions can be developed with the aid
of computer simulations shining a new light on the origin
of weak and strong chaos—thus of slow and fast
mixing—in high-dimensional Hamiltonian flows.

Section II is devoted to a brief recall of the geometrical
description of mechanical systems with Riemann and
Finsler spaces and contains a result by Eisenhart that is
generally unknown. This section also contains a discus-
sion about some approximations that can be made on the
Jacobi—Levi-Civita equation for the geodesic deviation
in order to define geometric indicators of chaos. The re-
lationship with Lyapunov exponents and with a
widespread method for their numerical computation is
also discussed. Section III is devoted to a critical discus-
sion of the results of numerical simulations on the FPU
model, on the classical lattice ¢* model, and on the Toda
lattice.

A discussion on the perspectives of future development
of a differential geometrical approach to Hamiltonian
chaos is given in Sec. IV, where some conclusions are also
drawn.

II. GEOMETRY AND HAMILTONIAN DYNAMICS

We aim at considering Newtonian mechanics from a
geometrical point of view. More precisely, the trajec-
tories of a Hamiltonian flow are regarded as geodesics of
a Riemannian manifold, equipped with a suitable metric,

so that weak or strong chaotic instability of the trajec-
tories can be related with geometrical properties of the
underlying manifold.

Certainly the natural geometrical setting of Hamiltoni-
an dynamics is within the framework of symplectic or,
more generally, Poisson geometry. But since in physics
we are mostly interested in the study of Hamiltonian sys-
tems that have a standard kinetic part, also Riemannian
geometry can be used. The advantage of using Riemanni-
an manifolds relies on the possibility of measuring the
distance between two points, thus the separation between
two different trajectories. It is well known how Newtoni-
an mechanics can be rephrased in the Riemannian
geometrical language; nevertheless, it is not out of place
to recall the main concepts and definitions that are used
to describe and measure Hamiltonian chaos from a
differential geometrical point of view.

First of all let us mention that different choices are pos-
sible for the ambient space (configuration space,
configuration space-time, phase space), therefore different
metrics can be used. Besides, for more general problems,
when the Riemannian description is not possible, still a
geometrical approach in the same spirit can be developed
with the aid of Finsler spaces.

In the following, using the configuration-space mani-
fold equipped with a Riemannian metric, only a first step
is done in the direction of a geometrical description of
Hamiltonian chaos.

The relationship between Riemannian geometry and
Newtonian mechanics has its origin in their variational
formulations. In fact, the geodesics of a Riemannian
manifold are defined as extremals of the arc-length func-
tional

L= :ds , 2)

and the trajectories of a mechanical system are given by
the extremals of the action integral
A=["Lig\g)d 3)
= f By q',q')dt (

according to Hamilton’s least action principle, or by the
extremals of

= i, 5l 4
A fymzr(q g"dt @)

according to Maupertuis’s principle [ T is the kinetic en-
ergy and y(t) are all the isoenergetic curves joining two
given points q, and q;]. Thus the trajectories of a
mechanical system can be viewed as geodesics of a mani-
fold, once a convenient metric is given to this manifold.

A. Maupertuis’s principle and the kinetic-energy
metric on M

Let us begin with the case where the metric is provided
by kinetic energy. In this case we have at our disposal a
positive-definite quadratic form which defines a proper
Riemannian manifold [22].

Now, consider as ambient space a smooth n-
dimensional manifold M, called configuration space,
where the motion takes place. Let TM=U ., T ,M be
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its tangent bundle. The function L: TM — R, defined by
L =%< v,v ), is a free Lagrangian describing a free motion
on M. In this case L =T, i.e., the Lagrangian has only a
kinetic part. The scalar product {v,v) for all the
tangent vectors v provides a Riemannian metric on M. In
local coordinates one has L =g;;¢'¢’, where g; is the
metric tensor on M.

Let w; be the Lagrangian closed two-form on TM; w,
is associated to the canonical symplectic form
wg=3'-1dq' Ndp; defined on T*M (phase space) by
means of the Legendre transform FL: TM —T*M, so
o =(FL)*®,. In local coordinates, putting
Lq,»q,:(azL /3¢'3¢’), one has w, =z;fj=1(Lq,-q,dqi
A dqi+Léiq,dqi/\ dg’). We denote by X the unique La-
grangian vector field on 7M such that

o (Xg,Y)=dE(Y) (5)

for each arbitrary vector field Y on TM, E is the “energy”
given by E=S—L with S: TM —R defined by
S(v,)=FL(v,)v,.

The solutions of the Euler-Lagrange equations are the
natural motions of the system described by the Lagrang-
ian L. Besides, the natural motions are the integral
curves of the vector field X;. Notice that second-order
equations are possible on TM but not on T*M.

The so-called base integral curves of Xy are given by
the canonical projection of the integral curves of X, from
TM to M. Conversely, for each curve y,: R— M a natu-
ral lift exists from M to TM, that is, yo— (v, 70)-

It can be proved that y,: R— M is a base integral curve
of X if and only if y, is a geodesic for M, that is,
v 7./07'/0:0 with VV'o the covariant derivative of the canoni-

cal Levi-Civita connection associated to g;;.

In local coordinates, having set Yols)=
(g'(s),...,q"s)), one has
2 i ) i gk
_d_q_ i dq dQ =0, (6)

ds? * ds ds

where s is the proper time and—as usual—the summa-
tion over repeated indices is implicitly assumed; I‘;k are
the Christoffel coefficients of the Levi-Civita connection
associated with g;; and are given by

_ agjk
aq™

) 19 g,
re g | 2o 2o
aq’ dq

)

Now, if ¥: M —R is a potential-energy function on M, we
can incorporate it into the Lagrangian by defining

Ly=3v,v)—V(myv), (8)

where my;: TM —M is the canonical projection of the
tangent bundle, and then define energy as
E(v)=1(v,v)+V(myv). Then yy(s) is a base integral
curve of the corresponding Lagrangian vector field X if
and only if Vy.o‘;?o(s)z——gradV[yo(s)], that is, in local

coordinates,
ﬁ T dJ_’igjz — ij'_a_V , 9)
ds? * ds ds dg’

that are Euler-Lagrange equations.

Assuming M to be a compact manifold there exists a
number E such that E > ¥V (q) for q€M. Then with such
a number E one can associate a kinetic-energy metric or
Jacobi metric on M by putting §=[E — V(q)]g; evidently
g is conformally equivalent to g, and in coordinates

It can be shown that the base integral curves of the La-
grangian (8) coincide with geodesics of the Jacobi metric
(10) up to a reparametrization with energy 1. In the fol-
lowing we shall denote the Jacobi metric by g;.

If we denote by f‘}k the connection coefficients derived
from the metric (10), the corresponding geodesics are
given by

d’q' | =i dgq’ dt]k_
—d—S%+rjk(q)IW—o. (11)

Let us restrict to those systems whose kinetic-energy
term, with a suitable choice of local coordinates, can be
diagonalized, and o) let us assume that
g;=[E— V(q)]&ij, hence, with W=E—V and
W, =0W /dq'=—03V /3dq', Eq. (11) gives

d’q' 1 dg’ dg' __; dq* dq'
49 1 w2449 gy g 2424 |—g;
a2 2w PV s Tas ISk gs ds

(12)

finally, using ds?>=2W?2dt?, this yields

2 i
aq __9V (13)
dt g’

i.e., Newton’s equations associated to L, of Eq. (8).

B. Hamilton’s principle and Finslerian metric
on M XR

In order to get a regular variational problem from
Hamilton’s least action principle 84 =0, the Lagrangian
function L(q‘,¢") has to fulfill some conditions. In par-
ticular, the variational problem has to be invariant for
time reparametrization; that is, the integral curves must
make stationary the action integral in Eq. (3), indepen-
dent of the choice of the time parameter ¢. In order to
fulfill this request, it is necessary and sufficient that the
function L(q',4’) be homogeneous of degree 1 in the ve-
locities, that is, L(g',A¢')=AL(q',¢"), A>0. This condi-
tion is not so stringent as it could appear; in fact, by add-
ing a supplementary dimension it is possible to define a
parametrically invariant extension of the initial Lagrang-
ian as follows [23]:

Alg%¢)=L(q,¢'/¢" "hg""', a=1,...,n+1, (14

where the parametric representation g “(u ) is expressed as
a function of an arbitrary parameter u. Hence
¢°=dq°/du and dq'/dt=¢'/¢""'. Equation (14) is
homogeneous of degree 1 in the velocities; then taking u
as an integration variable, the Hamiltonian action is
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given by
q
= 2q%du , 15
Ky fqo A(q?,q%)du (15)

where the explicit expression of A reads as

(16)

In such a way the trajectories of our system in
configuration space-time are given by the extremals of the
functional (15), and the formalism is invariant with
respect to reparametrizations.

The function A(g%¢?) naturally provides the tangent
bundle T(M X R) with a metric function. The metric ten-
sor g,5(g%¢“) defined through the metric function A as

_ 1 9*A?
072 857"
provides the manifold M =M X R with a Finslerian struc-
ture; similarly to the case of a Riemannian manifold,
from the knowledge of the metric tensor g,; many im-
portant geometric properties of the manifold can be de-
rived.
It is remarkable that the Finslerian geodesics on M, as-

sociated to the parametrically extended Lagrangian A,
are described by

Pi _ w+13L _

du a aqi

d OA _dH _

du 3¢g"*t' du
where p, =0A /94 and H is the Hamiltonian function as-
sociated with L. The first n equations, written in terms of
the initial parameter ¢ (i.e., ¢" *1=t¢), are the equations of
motion associated to the Lagrangian L, while the
(n +1)th equation is nothing but the energy conservation
along any geodesic.

Several definitions can be given [24] for the connection
on a Finslerian manifold, though Cartan’s connection has
many advantages with respect to the others. Using
Cartan’s connection three different curvature tensors can
be defined and also an equation for the vector field of geo-
desic variations can be introduced [24]; however, their
derivation from the metric (17) is rather tedious when the
metric function is given by the Lagrangian (16). There-
fore, having mentioned the existence of an interesting
direction for further investigations, we restrict ourselves
to the simplest possibility in the Riemannian framework.
Finsler spaces are necessary to describe Hamiltonian sys-
tems having a functional dependence on the momenta
other than purely quadratic.

(17)

0, i=1,...
(18)

C. Eisenhart’s metric on M X R?

Consider as ambient space the configuration space-
time, i.e., the (n-+1)-dimensional product manifold
M=M XR. This space is the set of all the possible
configurations of a mechanical system at different and
continuously varying times. Time is a parameter in the
Noewtonian sense; thus ¢!, ...,g"€M and q°ER, so that
q°=t

Now, we could try to define a metric for M XR by
somehow relating ds to Ldt. Obviously this would give a
pseudo-Riemannian metric.

In other words, the Lagrangian L(g%g“),
a=0,1,...,n, can provide the quadratic form which is
necessary to define a pseudo-Riemannian structure, in
fact from 2L (g% ¢*)=a;;4'¢’—2V(q*)(4°)* one has

ds*=a;dq'dg/—2V(q*)dq°)’ =g 5(q*)dg°dq” . (19)

Unfortunately the geodesic equations derived from (19)
are

v
9g;

ol

1 dL i

2L dtq 0, (20)

whose solutions do not coincide with natural motions be-
cause L is not a constant. Then a simple but nontrivial
extension of the metric (19) was given by Eisenhart [25],
who introduced an additional coordinate ¢""!ER so
that the time parametrization of the arc length becomes
affine and the natural motions are obtained as geodesics
of the new metric. Eisenhart’s arc length is written as

ds;=a;dq'dg’—2V(q°)(dq°)+2dq%q"*' . (21)
Given two real constants k2 and C, it is possible to com-
pute explicitly [26] the function ¢" *1(z) as

q" N =k*+C— [diL(g*q" , (22)

n+1 s related to the Hamil-

which shows how tightly ¢
tonian action.

Eisenhart’s theorem states that the trajectories—in
configuration space-time /=M XR—of a conservative,
holonomic dynamical system, can be obtained as follows
[26]: given two real constants k2 and C, consider the
product M XR equipped with Eisenhart’s metric gz
defined by (21), where ¢" ! is the coordinate along R,
then the dynamical trajectories are the projections on J#1
of the geodesics of (M XR,gy) for which the arc length is
positive definite and given by ds =k?dt>. Conversely, if
any point p €M of such a trajectory is associated to a
point p’ €M XR whose projection coincides with p, and
p' is defined by (22), then p’ describes a geodesic of M X R
fulfilling the preceding conditions.

Explicitly, gz on M XR is given by

[—ZV(q“) 01
gr= of a0 23)
1 0 0
and
0 0 1
gEﬂ: QT g—l QT ) (24)
1 0 2V(g9

where 0 is the null row vector of R”, 07 is its transpose,
and a=ja,|.
The nonvanishing connection coefficients associated
with g can be easily computed, and for a;; =9,; they are
1,=0V /dq; and I'%,T1=—3V /dq’, so that the geodesic
equations are
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2,0 0 0
479" i (9299 _o =y, ...

ds? 0 g g T T M
(25)
d210: dzqn+1 +Fn‘+l . d Og—q“i-:
PR o (@) s O
and since ds?>=k2dt?, one finds
d’q'__ v . _
dtz— 3.’ i=1,...,n,
(26)

d2q0 _

d’q""' _dv.dg' _ _dL
dt? dq’ dt dt’  di?

The first n equations are obviously Newton’s equations,
the evolution equation for g" 7! is the differential version
of Eq. (22), and the last equation states that g°=tz.

D. Geometrical description of average instability
of the dynamics

Let us now briefly recall that, given an affine connec-
tion V on a manifold M, the curvature tensor R of the
connection is defined by [27]

R(X’Y)ZVXVY_VYVX_V[X,Y] (27)

with X,Y vector fields on M, and it measures the degree
of noncommutativity of the covariant derivation V on the
manifold; if R=0 the manifold 1is flat and
[VX’VY]zv[X,Y]'

In local coordinates the components of the Riemann
tensor are given by

Rl;=8T};—3,T}+TyT,L, —Tal,, , (28)
where 3, =93/9q".

The trace R,; =R}, is the Ricci tensor and the scalar
R =g¥R,, is the scalar curvature of M.

It is important to remark that from the curvature
properties of a Riemannian manifold some relevant
consequences about the stability properties of its geo-
desics can be derived. This is the central point on which
our attention is focused in the present work, so we com-
ment on it in more detail.

Geodesics are obtained as extremals of a functional,
but nothing more (i.e., if the extremals are maxima or
minima) can be said unless second-order variations are
considered. It is evident that these second-order varia-
tions give information about the surrounding landscape
of a geodesic, thus of its stability with respect to small
variations of the initial conditions. In order to measure
this degree of sensitivity to initial conditions, we consider
a congruence of geodesics y(7,s) and a separation vector
&, which is Lie dragged by the congruence. Such a
congruence, pictorially represented in Fig. 1(a), is the en-
semble of geodesics issuing from a neighborhood J and
locally filling the manifold without intersecting; more-
over, it is assumed that this ensemble can be
differentiably parametrized by a real number 7. Now
choose any given geodesic y(7ys) as ‘“‘reference geo-
desic,” define the parametrization o) that

T+ AT

s — As

FIG. 1. Pictorial representation of a congruence of geodesics
and of the geodesic separation vector £. (a) Bundle of geodesics,
issuing from a neighborhood J, parametrized by 7. (b) The sep-
aration vector can be used to measure the distance between
nearby geodesics: £A7=BD does from the point B of the refer-
ence geodesic ¥(s,7) to the point D of the test geodesic
v(s,7+A7). B and D correspond to the same value of the arc-
length parameter s.

v(70,5)=7(7=0,s), then the separation vector £(s) is
defined by

oy(r,s)

§(s)= or

=0

Using finite differences in 7 and s, Fig. 1(b) qualitatively
shows that £(s) can be used to approximate the distance
between two nearby geodesics.

The Lie dragging by the flow of the separation vector is
expressed by ,L7‘§=O (,Ly. is the Lie derivative). Let us
remember that V,;’V(T,S )=0 for any geodesic. Obviously
the derivative V }.,g‘ measures the parallelism of nearby
geodesics, while V7'V7>§ gives the acceleration of the sepa-
ration £ between initially close geodesics. The relation-
ship between curvature and stability becomes evident by
computing this acceleration. In fact, using Ly Y=[X,Y]
for  the Lie derivative and the relation
VyY—VyX=[X,Y] for a connection with vanishing tor-
sion, one has
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V.V E=V(LEFVY )=V Vy=[V,,V]y+VV 7

=R(7,8)y (29)
and finally, using R(X,Y)=—R(Y,X), one finds
VvV . oy —
75 ds (s)+R ,(5)(E(s),7(s))y(s)=0, (30)

which is the Jacobi—Levi-Civita equation [28] for a vec-
tor field of geodesic variations, where (V§/ds)=V7.,§ is
the covariant derivative along y(¢); in local coordinates,
it reads

Ve _ i dx) 38 | o odxd _ dE L dxd i
ds (V;6) ds axj+r,k ds £ ds +L ds £

Equation (30) is our main tool for tackling Hamiltonian
chaos from a geometrical point of view. It measures the
sensitivity of the trajectories to initial conditions, and
therefore their stability.

At this point one can wonder what is the difference
with respect to the common definition of chaos, because
here apparently the same definition is given. First of all,
it is necessary to distinguish between the usual explana-
tion of the origin of chaos and the operational method to
detect it numerically (Lyapunov exponents). Dating back
to Poincaré [2], Melnikov [3], and others, the origin of
chaos is attributed to homoclinic intersections of per-
turbed separatrices near hyperbolic points. This is a per-
turbative picture. It requires the use of action-angle vari-
ables and applies to quasi-integrable Hamiltonians [Eq.
(1)]. Moreover, for typical Hamiltonians of physical in-
terest, the explicit change of coordinates to action-angle
ones is, in general, a lengthy work that quickly becomes
intractable with growing n. In practice, and particularly
at high dimensionality, homoclinic intersections mainly
give a qualitative picture of the source of chaos.

It has been already explained why we want to get rid of
the limitations imposed by quasi-integrability. So, in the
sake of a nontraditional explanation of the origin of
Hamiltonian chaos and of a quantitative method to de-
scribe it, the central idea of this work is to exploit the
tight relationship between local instability of the trajec-
tories and Jocal geometry (curvature) of the underlying
manifold. The link between local instability and chaos is
made by the compactedness of the manifolds where the
trajectories live. The geometrical approach makes use of
the natural coordinates (positions and velocities), applies
at any energy and at any strength of the nonintegrable
part of the Hamiltonian, and allows a unified treatment
of both the explanation of the origin of chaos and the
method to measure its intensity.

At variance, the standard operational way to detect
chaos is through Lyapunov exponents: they are eigenval-
ues measuring the stability of nearby trajectories. Their
mathematical definition is made possible by Oseledets’s
multiplicative theorem, which circumvents the problem
of knowing the connection of the manifold where motion
takes place.

Let us recall that for a generic flow ®: V—V on a
manifold ¥V, given an invariant measure u, and denoting

byd®,: T, V— T 4,V its tangent dynamics, Oseledets’s

theorem ensures that VxE€V,, VeE€T,V (e¥#0), with
V,CV and such that u(¥V,)=1, there exists and is finite
the quantity [20]

Ax,e)= lim %lnndd)i(e)ll , (31)
t—

which is independent of the metric of V. The definition
of the largest Lyapunov exponent relies upon this
theorem. More explicitly, let J(x) be the Jacobian matrix
of the Hamiltonian flow @' at the point x=(p,q).
Denoting by £ the variation vector, the tangent dynamics
d®'is described by

S (32)
dt - ij(X(t))gk ’
thus J: T, V—T .. V.
Take a vector £, €T,V and its transformed
& oix)E T gy, Vs notice that
CE gty d€x ) =L*E i) (33)

and that the product appearing at the left-hand side (lhs)
belongs to T o\ Vs while the product of the right-hand
side (rhs) necessarily belongs to T V, i.e., 1*§(¢,X)e T.V,
and in general [|§ .. |I7*||6,||, whence J*#J " 1; there-
fore J maps the tangent vectors forward in time while J*
maps these vectors backward in time but not retracing
the forward evolution of £(¢). Having defined
G =]I"=1J:(® " !x), Oseledets’s theorem states that the
limiting matrix

A, = lim (G*G)!/*" (34)
n—> o0
exists and is finite, thus for any n the product

(T17=1* X114 =1Jx) maps an arbitrary vector EQET, V
into a vector £y €T, V, i.e., into the same tangent space
T, V, hence an eigenvalue problem for A is well defined in
the vector space T, V.

Now it should be clear the standard Lyapunov ex-
ponents do not have any local meaning because they are
defined as asymptotic quantities. In other words, it would
be improper and misleading to think of Lyapunov ex-
ponents as averages of local divergence rates in phase
space. An illuminating example of this fact is provided
by a consequence of Fiirstenberg’s theorem on random
matrices [29]. Consider an infinite product of matrices
representing elliptic rotations with a random change of
the rotation parameter (semiaxes of the ellipse), the limit-
ing matrix has positive Lyapunov exponent, i.e., it
represents a hyperbolic rotation. On the contrary, it is
well evident that the average of the largest eigenvalue of
the single matrices in the product (average of the local
exponents) necessarily gives a vanishing Lyapunov ex-
ponent.

The above statements seem to be in contradiction with
the standard numerical method wused to estimate
Lyapunov exponents. In fact, it is just an average of the
local divergence rates of nearby trajectories that is nu-
merically computed. But there is no mathematical
proof —for generic flows—that true Lyapunov exponents
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(those of Oseledets’s theorem) are correctly approximated
by this averaging procedure, whereas the standard nu-
merical algorithm can be more naturally justified on
different mathematical grounds: the Jacobi-Levi-Civita
equation applied to the case of Eisenhart’s metric (see
below).

Equation (30) has an important property: it takes into
account the connection on the manifold where natural
motions take place, so it already contains information
about parallel transport, i.e., how the reference frames
are transported along a trajectory. At least for Hamil-
tonian flows, Eq. (30) makes possible a local description
of the dynamics of a vector field of geodesic spread. No-
tice again that the ambient space of this intrinsic descrip-
tion is a manifold and not R”. Equation (30) allows a new
definition of the dynamic instability exponents—
analogous to Lyapunov exponents—without needing to
go back to the initial tangent space in order to apply
Oseledets’s theorem.

Moreover, the instability exponents (i.e., chaoticity ex-
ponents for compact manifolds) that can be derived from
Eq. (30) are directly related to the geometrical properties
of the manifold underlying the motion, while this rela-

J

& 60jd§0—1— ]l

§° dq RO

0 0 1
ds ds§ Rio; d Roy ds 5 ’
v v

n+1_0
ds ds§

As g®=0 [Eq. (28)], those components of the mixed
Riemann tensor that have a contravariant index equal to
0 vanish, then since the parametrization of the arc length
is affine we can replace s with ¢ in ordinary and covariant
derivatives. Finally, as §° does not accelerate, we choose
separanon vectors having the initial conditions

O)—§O(O)—0 so that from Eq. (37) we get for the sep-
aratlon vector in configuration space

251' 2
d + oV g=0, i=1,...,n, (38)
dr? dq;0q’

which is exactly what is commonly used to compute nu-
merical Lyapunov exponents. For Hamiltonian flows this

equation is obviously equivalent to Eq. (32) since
§=(£4€,) and §p“d§q/dt If we denote by
((q,p,), »(QgpPrs)s- - -) the numerical phase trajec-

tory, then the variation vector (§4(kT),8,(kT)) is mapped
to (§4((k+1)7),6,((k+1)7)) by the matrix

1 71

L= 0 1+70

(39)

’
q(kT)

where Q= —F(V) is the Hessian of ¥V, so that a numeri-
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tionship remains quite implicit with Lyapunov exponents.

Finally, the use of local instead of asymptotic chaoticity
indicators has another major consequence: their ensem-
ble averages can be computed on constant-energy sur-
faces and compared with time averages computed along
phase trajectories. On the contrary, this is not possible
for Lyapunov exponents. They are sensitive to the histo-
ry of a trajectory; only in case of strongly chaotic dynam-
ics can some approximate computation be done [14], but
this is limited to scaling behaviors.

Rewriting Eq. (30) in components, we get

vy

, dg’ . dq*
s +Rl,k[q(s)]75€—§1—q—ds =0 (35)

Let us start with finding its explicit form in the case of
Eisenhart’s metric (23). Simple algebra shows that the
only nonvanishing components of the Riemann tensor are
given by (a;;=5;;)

3’V
dg'dq’ ’
hence Eq. (35) becomes

0i0j — (36)

[

cal estimate of true Lyapunov exponents would first re-
quire the computation of the product matrix
(T17=1L* NT1% =& ) with a large n [Eq. (34)] and then its
dlagonahzatlon would give Lyapunov characteristic ex-
ponents. On the contrary, the universally adopted [30]
numerical algorithm prescribes the averaging of local
divergence rates of nearby trajectories: this procedure is
meaningful and well defined in the light of the geometri-
cal background of Eq. (38) and does not require
Oseledets’s theorem at all. Moreover, the average of lo-
cal divergence rates is insensitive to the order of the ad-
denda, while the product of the matrices J; is very sensi-
tive to their order because they do not commute
(Fiirstenberg’s theorem is a consequence of noncommuta-
tivity).

Let us now consider the case of a kinetic-energy metric
on M. Having set g;=W39,; with §,; the Kronecker 8
function and W=E — ¥V(q*“), using Eq. (7) we find

k= (40)

J E V
for the connection coefficients, and according to Eq. (28)
the components of the Riemann tensor are

———8""(3, W$,,, +3;W$,,;—0,, W)
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Ro—L|_ @V o @V o @V PV
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__ 3 OV Ve 8V Ve Vv AK_B_KS (85.8,—8.8.,)Y 8V
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1)

Hence, if we define an operator Q whose matrix elements
are

i . — im dqj qu
Qi(q(s),q(s))= w28 R ik dr dr | (42)
then Eq. (35) becomes

vV I_
43
s ds "+ Ql(q(s),q(s))E'= (43)

so that the n eigenvalues of the matrix @ can be used to
define n independent instability exponents. Notice that,
in case of practical evaluation of such exponents, the
second-order covariant derivative—written in
coordinates—yields additional terms modifying the ma-
trix Q.

A negative eigenvalue indicates the runaway accelera-
tion of the corresponding component of the separation
vector. The eigenvalues can be averaged along a trajecto-
ry to give, for compact manifolds, n geometric indicators
of chaoticity.

It is well evident that this is a hard numerical work be-
cause there are ~n* independent components of the
Riemann tensor. Therefore for the sake of the
simplification of the problem, let us begin by studying the
time evolution of the norm ||£|| of the separation vector
looking for some synthetic indicator of chaos similar to
the largest Lyapunov exponent (numerical).

To this purpose let us multiply Eq. (30) by &,

(VZE,€)=—(R(&7)7.,€), (44)

where ¢, ) stands for the scalar product on the manifold
(in local coordinates (X,Y ) =g,-jX"Yf).

The lhs of Eq. (44) can be simplified by considering the
identity

(V3E,6) =V (V_£&E)— |V, & 45)
and the inequality
2
19,172 %ngu]
so that from
2
VAYE0 =7 25l
we get
NNUE U L I U
(Vi£) < 5= SlElr— | Solel | - @6)

For what concerns the rhs of Eq. (44), remember that for

f
any given couple of vectors X,YET,M (where pEM)
and nondegenerate plane 7(p)&ET,M spanned by them,
the function on T, M defined by
(R(X,Y)X,Y)
K(X,Y)= > 2 47)
(X, X (Y, Y)—(X,Y)?

is the so-called sectional curvature at p. Therefore the
rhs of Eq. (44) can be rewritten as

(REVIW,E)=K(,E){y,7)(EE)—(7,6)?), (48)

and supposing that £ denotes only the normal com-
ponents to 7, Eq. (48) becomes

(R(E7)7,E)=K(7,E)X 7,7 ){EE) . (49)

At this point some approximation must be introduced
to simplify the original problem, because the sectional
curvature at p €M still depends on the full Riemann ten-
sor and on the vectors y,£& T, M; thus we try to replace
K(y,£) by some average quantity at p EM. We have at
least two natural possibilities at our disposal. In fact, if
X, and X, are mutually orthogonal unit vectors of
T,M, all the possible sectional curvatures at p EM are
given by

K(z —RxJIkX‘r)X(s)X(r)‘X (s)p TS = 1 RO (50)

where n is the dimension of the manifold, then it is well
known [31] that (i) zrs_‘K,‘f)=R with R the scalar cur-
vature of M at p and (ii) 37—, K?'=R(X,,)=R, X! X s
where R(X,)) is the Ricci curvature in the direction of
the unit tangent vector X ,,.

Take X, and X, codirectional with y and &, respec-
tively. There exist n independent directions for y at p
and n —1 for § such that £1y. Let us average over all the
combinations of y, and §,, thus over all the geodesics is-
suing from p €M and having 7, as an initial condition,
and over all the different choices for the geodesic devia-
tion at p (take, for instance, a uniform distribution of
directions for £ keeping its norm fixed). Now K(y,£) in
Eq. (49) is replaced by the average sectional curvature
K,,=R /n(n—1), so that the rhs of Eq. (44) becomes

R
HéHzEmllﬂlz, (51)

é_tz
ds

since ||dy /ds||*=1. A less drastic approximation con-
sists in choosing a given geodesic that originates at p, i.e.,
holding y, fixed, and averaging only over &, In this
case, after the above item (ii), we replace K(7,£) in Eq.
(49) by R(dy/ds), so that now the rhs of Eq. (44)
simplifies to
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lg 1x _7’__7_
" [ llléll2 Rie= €117
1
= ka s lléll2 (52)

Let us now give explicit expressions for the Ricci ten-
sor and for the scalar curvature. By contracting the
Riemann tensor we obtain

AV 4—n
Ru= V(s
k 20E—V) 4(E—V)2( ) [ Bi
n—2 v 3(n—2) 3V 3V 53)
2E V) 3q'9g*  4E—V) 3¢’ 3¢"
and then the trace R/ gives the scalar curvature
2
Rennety|—8¥_[1_3 ] wwr |
n(E "“Vv)2 4 (E __V)3
(54)

where A and V stand for the Euclidean Laplacian and
gradient, respectively.

Finally, denote by y either the quantity in Eq. (51) or
that in Eq. (52), consider ||£||* as a corresponding aver-
aged norm, then our approximate version of Eq. (44)
reads as

2
d2 2 ~ d
——d[&%letzxngntz —gsﬂ >0, (55)
X=R/n(n—1), (55a)
~_1_ dq' dqg*
x=;Rikji“—3s , (55b)

which is the main computational tool of the present pa-
per. The quantities appearing in items (55a) and (55b)
are, respectively, given by Egs. (54) and (53), according to
the corresponding approximations, and are computed
along a trajectory.

In what follows we denote by ¢ the average norm ||£||2
of the separation vector, therefore Eq. (55) is rewritten as

2
—5+2 Te— 45 >0 (56)

é

In order to describe the time evolution of &, i.e., passing
from geometry to dynamics, we make use of the arc-

length parametrization ds?=2W?dt? to find
2
d*% 1 dw dg as | >
dt? W dt dt - 2§ dt =0. (57)

Now Y=2RW?*/n(n—1) or, alternatively,
xX=R;yq ig*/n. The associated equation (i.e., with the lhs
strictly equal to zero) is homogeneous of degree 1 in
£,£,&, so that—in principle—it can be solved by substi-
tuting

§)=¢oexp [ f(2)dt (58)

into Eq. (57) and then integrating the resulting equation
for f(t)

1 dw

df fZ___
W dt

dt f+2x=0. (59)

Equation (59) is a Riccati equation. The functions
—W(t)/W(t) and x(t) are rapidly oscillating functions
with complicated time behaviors. By the standard trans-
formation

2 dx

==42* 60

x dt (60)
Eq. (59) becomes a linear second-order equation with
nonconstant coefficients

d’x W(t) dx
dt2 W) dt

+x(t)x=0. (61)

Finally, by introducing the transformation

y=xexp|—+L [diW(t)/ W) |, (62)

we rewrite Eq. (61) as

d?
d’z’+Q 1)y=0, (63)
where
ey LW 1d | W
Q(t)=x(t) |\ >4 W]' (64)

Equation (63) is called Hill’s equation.

As we shall see in the next section, the numerical com-
putation at any energy of W /W shows that this is a rap-
idly oscillating function of zero mean value and very
small norm, whereas y(¢)=Y+n(¢) has a nonzero mean
X and a fluctuating part 7(¢). As a consequence the ex-
ponential in Eq. (62) makes small oscillations around 1,
and y(t) is close to x(¢).

It is well known that parametric resonance can make
the solutions of Hill’s equation unstable. This is a subtle
mechanism to make chaos [32], in fact, even if x(¢) is al-
ways positive, provided that the conditions for paramet-
ric instability are satisfied, y(¢) can grow exponentially in
time and thus, going through Egs. (60) and (58), the norm
¢ of the geodesic variation vector also grows exponential-
ly in time.

In the next section it is shown that also this mechanism
of parametric instability is actually at work to make
chaos. However a systematic and quantitative investiga-
tion of this aspect is left for a subsequent work. Let us
keep in mind that Eq. (63) has nontrivial instability prop-
erties and deserves a more complete study; however, we
shall only proceed with a first rough stability analysis.

Q(t) is rapidly oscillating with respect to the instability
time scales (measured, for instance, by the numerical
Lyapunov exponents), thus we can perform a simple
averaging of Eq. (63). The averaged reference system be-
comes ’

dZ—(i)
dt?

+gp*'=0, = [ ldo(t)=%,

T large .

(65)
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The suffix (+) refers to the solutions 5'*(¢) correspond-
ing to positive or negative Q. Neither Eq. (65) nor Eq.
(63) has singularities at finite times, and Eq. (65) is a uni-
form mean of Eq. (63), hence the conditions required by a
theorem due to Bogollubov [33], are fulfilled, and so the
smallness of the norm ||y‘*(z)—5*)(¢)|| is ensured. In
other words, during the time intervals where y(t) <0, the

solution y‘7'(¢) of Eq. (63) is close to the averaged solu-
tion 37 (¢z) of Eq. (65), where ¥ equates the local
negative  average __ of  x(t). Obviously it is

77 U2)= 4 cosh(V —t)+ B sinh(V —y1).

Conversely, when y(¢)> 0, the solution y‘*)(¢) of Eq.
(63) is close to the averaged solution of Eq. (65):
7t )=4 cos(\/)?t)+B sin(‘/it). By substituting
xF(£)~yF)¢) into Eq. (60) we find f(¢), and through
Eq. (58) we finally find an approximate solution of Eq.

(57). t

In the case y(t)> 0, the solution of Eq. (57) is approxi-
mated by

— \/_)7 sin( \/;7! )+B \/;7 cos( \/_)?t )
cos( \/)?t )+ B sin( \/ft )
= ¢ cos(V 1)+ B sin(V ) |2, (66)

g(t)=Eoexp [dr (2

where 4 =1 has been chosen to make §(0)=¢,, and B is
an arbitrary parameter. It is well evident that y(z)>0
implies that the norm of the separation vector can remain
bounded, so that initially close trajectories remain close
to one another. Notice that this is a necessary condition
for the occurrence of regular motion but it is not
sufficient because of the above-mentioned possibility of
parametric instability.
At variance, in the case y(¢) <0 it is found

\/_—_)-7 sinh( \/:_)'Zt )+B \/——_)"(‘ cosh( \/—_Yt )

§(t)zé‘oexpfdt 2

=¢,[ cosh(V —51)+B sinh(V — 1) ]2~

again 4=1 is chosen to make §(0)={, and B is arbi-
trary. Therefore y(¢) <0 is a sufficient condition for local
exponential instability of nearby trajectories or, in other
words, for chaos (on compact manifolds). This also
means that the natural motion makes stationary but not
minimum the action—or arc-length—functional and
this fact is responsible for the local defocalization of the
geodesics, thus for their extreme sensitivity to initial con-
ditions. -

It is natural to take A= ReV —x as a geometric-
chaoticity indicator (GCI). In order to measure a global
degree of chaoticity of the trajectories, we can use time
averages of A; these are computed along any natural
motion of the system under investigation as

~r_1 T () 5a 172

X Tfo dt Re[ —x(g%1),¢“(t)]'"?, (68)
and can be obtained only by numerical integration of the
equations of motion.

We can also define a static average ( A) by

(AMy=Q7!' [, dopRe[—x(g%¢"]"?
£

=~ [ TI dg,dq;8(H'(q

i=1

aaq‘a)'_E)

XRe[—x(g%¢"]'"?, (69)

where =5 is the constant-energy surface of phase space
defined by H'(¢%¢°)=E, and H'(g%¢°) is the Hamil-
tonian of the system, with p? replaced by ¢° (for hyper-
regular Lagrangians TM and T*M are fully interchange-
able). In this way we compute an average quantity that
retains some geometrical property of the manifold
(M,g;) where the dynamics takes place. Using an ob-
servable of geometric type, one can wonder whether the
transition between weak and strong chaoticity can be

cosh(‘/—:}("t )+ B sinh( \/-—_)?t)
161+ B exp(2V —xt) 67)

[

recovered by following a corresponding change in the
geometric properties of (M,g;). This is the main concern
of the following section.

III. NUMERICAL COMPUTATIONS

In what follows we report the results of numerical
computations of dynamic and static averages of A or oth-
er geometrical quantities for three model Hamiltonians.
These are

H(p,q)= :gl [21-7; +3(gi 41— ‘Ii)2+71¢'l-‘(‘1i+1_‘1i *1 (70)
for the FPU B model;
H(p, q)—gl[;p, + (g1~ +im +ipgfl (71
for the so-called lattice (p4 model, and
Hp,q)= 3 %p,-2+%(e—”“’"““"")—1) (72)

i=1

for the Toda lattice. We remind the reader that the Toda
lattice is an integrable model.

The equations of motion derived from (70), (71), and
(72) have the form

d’q,

dtzl =(g;+11tq9;,-1—2q;)+F;(q(t))=G;(q(1)) , (73)
where

—m?q;—pg?, @* model

F. t))=

I(q( ) u[(qi+,—qi)3—(q,-—q,»_1)3], B-FPU model ,

—blg; ,—q;) —b(g;—q;, _,) (74)

G;(q(t))=—ae i1 % ge i 7= Toda lattice .
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Boundary conditions have been chosen as periodic, that
i8, ¢; =qp +i-

Equations obtained from (73) and (74) have been nu-
merically integrated by means of a leap-frog algorithm,
which is an explicit scheme given by

q:(t+At)=2q,(t)—q;(t —At)+(A2)*G,(q(t)) , (75)

where the truncation error is O[(Az)*]. Besides its sim-
plicity, this algorithm has the great advantage of being
symplectic, which means that its effect upon the equa-
tions of motion is equivalent to a canonical transforma-
tion of variables. This ensures a faithful numerical repre-
sentation of a Hamiltonian flow.

All the models have been integrated at # =128 in order
to compare the results of the present work with those re-
ported in Ref. [14]. For the same reason, the coupling
constant u in Eq. (70) is equal to 0.1, and the constants
m? and u in Eq. (71) are, respectively, equal to 0.01 and
0.1. The choice of the constants in Eq. (72) is @ =10 and
b=0.1; with these values the second-order expansion of
the exponential coincides with the harmonic-oscillator
part of the other models.

Numerical simulations have been performed on a Cray
Y-MP computer working, in single precision, with words
of 64 bits. The dynamics is numerically computed using
an integration time step Az =0.01; this value is reduced
at large energies in order to keep the relative energy fluc-
tuations AE /E in the interval 107°-1075. We recall
that the leap-frog algorithm gives no energy drift in time,
i.e., the energy fluctuations have zero mean.

Initial conditions are chosen at random and at equipar-
tition among the harmonic modes—as in Ref. [14]—for

the three models, that is q;(0)=0 and
pi(0)=¢;(0)=p{,with
1/2 )
plO= 2 > A;(0) cos ——"—T—ij]
n J=kis ok, "
. . 2T ..
+B;(0) sin Tul , (76)

where 4,(0) and B,(0) are randomly selected and con-
strained by

. . 4E
A} (0)+B} (0)= n“, k=1, ,%—1

J

oK (77)
'2 — 0 == i
AL (=", k=07

in order to fix at E, the energy of the initial condition.
The integration algorithm (75) is initialized by ¢;(0)=0
and g;(—At)=—p OAz.

For both the FPU model and the Toda lattice, particu-
lar care has been paid to prevent any possible drift of the
center of mass due to numerical errors. It has been also
checked that all the g; remain limited during their time
evolution. A slightly modified version of the FPU model
has been also considered with a small “mass term,” i.e.,
1m?q? with m?=10"% in the potential, in order to verify
that no qualitative change was produced on the results

reported in the following. All these checks aimed at get-
ting rid of the possible doubts about compactedness of
the configuration-space manifold. Moreover, we recall
that the g; in the models under investigation represent
physical displacements of atoms from their respective
equilibrium positions in a chain, therefore they cannot
indefinitely grow.

At each integration step the scalar curvature R of M is
computed using Eq. (54). For the FPU model, Fig. 2(a)
shows the number of times N7’ that R is found negative
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FIG. 2. FPU model, n =128. (a) Number of times that the
scalar curvature is found negative vs the number of integration
steps k. Upper curve at Ine=4; lower curve at Ine=2. (b)
Number of times that the Ricci curvature if found negative vs
the number of integration steps k. Upper curve at Ine =4; lower
curve at Ine=1.25. All the results are scaled to account for the
different integration time steps.
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as a function of the number of integration steps k. It is
well evident that N~ )(k) looks like a staircase function
linearly growing in time, in the average.

A definitely similar result is found in the case of the ¢*
model. On the contrary, in the case of the Toda lattice
and in the harmonic limits (u=0) of Egs. (70) and (71), R
is always found positive.

Qualitatively analogous results are obtained for
R(g)=R; (g%)¢'¢¥<0. In Fig. 2(b) the number of times
that R(q) <0 is shown for different values of the energy
density €. As in the previous case, a staircase function
shows up that, in the average, is a linearly growing func-
tion of time with a slope that changes with €. The results
concern the FPU model and, again, things are quite simi-
lar for the ¢* model.

In the harmonic limits of these models, as well as in the
case of the Toda lattice, R(q)> 0 is always found. In the
case of the Toda lattice, if b is not much smaller than 1,
some additional caution is necessary in the numerical in-
tegration at large €. Double precision (128 bits per word)
and very small integration time steps are necessary to
avoid numerical artifacts that break the integrability of
the model.

These results are the necessary prerequisites in view of
a consistent differential—geometrical description of
chaos. In fact, in the integrable cases, y is found always
positive, and no parametric instability is detected (see
below), thus the geodesics of (M,g;) are stable with
respect to small variations of the initial conditions and
chaos is absent. At variance, for the FPU and ¢* models
that are not integrable, R <0 and :(q) <0 are found in
subsets of a nonvanishing measure of M; according to
Egs. (57) and (67) this is sufficient to make chaos.

It is worth noticing that, in order to have a nonvanish-
ing probability of numerically picking a truly regular tra-
jectory, a positive measure of such trajectories must exist
in phase space, which is possible only below the KAM
threshold. Assuming the n dependence of this threshold
as given in the Introduction, and disregarding finer de-
tails just to get a rough estimate of u,, at n =128 we find
. ~1072%, This is an exceedingly small perturbation
strength, so it is hopeless to distinguish numerically be-
tween truly regular and stochastic orbits in the same
model. At variance, regular trajectories can be studied in
integrable models.

Both Ricci curvature R(g(¢)) and scalar curvature
R(g(t)) are strongly fluctuating functions along any tra-
jectory in FPU and ¢* models. In Fig. 3 a typical exam-
ple is given of the scalar curvature for the FPU model.
The Ricci curvature has a very similar time behavior.
This fact suggests that (M,g;) has a high degree of
“bumpiness.”

The quantity w(z)=(1/W)(dW /dt) entering Egs. (61)
and (64) rapidly oscillates with zero mean, and with a
root-mean-square value that is weakly dependent on €.
For instance, at E=4239 (Ine=3.5) the average value
@” is 0.014 and at E=47 (Ilne=—1) it is 0.007. Corre-
spondingly, when Y stands for the Ricci curvature, at
E=4239 it is 2~0.012y and at E =47 it is 0>=0.04y.

As already discussed in the previous section, an oscilla-
tory behavior of x(¢) could make chaos through paramet-
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FIG. 3. FPU model. Scalar curvature vs time at lne=2.

ric resonance, and this may happen also if y(z) is always
positive. This possibility has been checked by numerical-
ly integrating Hill’s equation (63) together with the equa-
tions of motion of the FPU model. The results show that
this mechanism is actually at work.

An example of this phenomenon at E=2570 (lne=3)
is shown in Fig. 4(a). The numerical solution y(z) of Eq.
(63) has been obtained using x(z)=(1/n)R,; (1)¢'(t)¢*(¢)
and a leap-frog algorithm with Az=0.001. The solution
y(t) oscillates with an increasing amplitude. This ampli-
tude growth can be due to negative values of y(z) or to
parametric resonance. In order to separate the effect due
to parametric instability, all the negative values of y(t)
have been replaced by zero during the integration of Eq.
(63). A test—performed by keeping also the negative
values of x(#)—showed that the solution y(z) is not
significantly altered. It is very interesting to compare the
result of Fig. 4(a) with the solution y(¢) obtained in the
harmonic limit (x=0) at the same energy E =2570, plot-
ted in Fig. 4(b). In fact, also at u=0 y(z) appears strong-
ly fluctuating, however in this case y(¢) makes only
bounded oscillations. In Fig. 4(c) a synopsis of both re-
sults is given in log-lin scale. In particular, the average
exponential growth of the envelope of y(¢) is well evi-
dent. A systematic investigation about the generation of
chaos by parametric instability will be the subject of a fu-
ture work.

Let us now comment about the £ dependence of GCI.
In Fig. 5 we report some examples of the time behavior of

172
A= [ar'Re | = LR, (g e Narakan | a8
computed for the FPU model and using Eq. (53) for the
Ricci tensor.
The convergence rate is in general rather good; howev-
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er, the numerical computations are very time consuming.
In particular, at small values of g, the computer time
needed gets rather long: the point at Ine= —2 in Fig. 6(a),
for example, needed 6 h of CPU time on a Cray Y-MP
computer.

Figure 6(a) shows the result obtained for A(e). We
denote by A the stabilized (“asymptotic”) value of A(z).
A synopsis is also given of the € dependence of the largest
numerical Lyapunov exponent A;, already reported in
Ref. [14], through which the SST was defined. The very
interesting and nontrivial result is the close analogy be-
tween A,(e) and A(e), and the coincidence—within the
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numerical precision—of the critical values of € at which
their crossovers occur.

At small € the computation of A is not extended as far
as A, the reason being merely practical. The lowering of
€ below Ine= —2 yields a too steep increase of the com-
putational time.

The average (78) has been also computed by replacing
X=2RW?2/n(n—1), but in this case A(¢z) has stronger
fluctuations and a definitely worse convergence in time.
However, the final result, say Ag(e), roughly displays a
transitional behavior around the same critical energy
density. A(e) and Ag(e) are compared in Fig. 6(b). It is
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FIG. 4. Numerical solutions of Hill’s equation (63) for the FPU model at n =128. (a) E=2570, initial conditions: y(0)= 1079,
$(0)=0; (b) same energy and initial conditions of the previous case but =0 (harmonic limit); (c) the absolute values |y(z)| of the
solutions (a) and (b) are plotted in log-lin scale: an exponential growth is clearly evident in the chaotic case while bounded oscilla-
tions are evident in the integrable case.
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FIG. 5. Examples of the time behavior of the running aver-
ages A(t) for FPU at (from top to bottom): E =6989, 447, and
47.

worth noticing that A(e) suggests a geometrical origin of
the transition between weak and strong chaos while this
is not the case of A,(g).

Moreover, A has also another interesting feature: it is
sensitive even to a very weak instability of the trajec-
tories. This is well illustrated through an example pro-
vided by the FPU model. In Fig. 7(a) the relaxation pat-
tern is reported of the largest numerical Lyapunov ex-
ponent A,(z) obtained at n =128, Ine=—35 (E=0.862)
and with random initial conditions at equipartition. To
until £ ~2X 10% it is found A,(z)~2%/t with a <<1, there-
fore, in case of insufficiently long integration time, such a
behavior—close to A,(t)~t !—could erroneously sug-
gest the existence of a regular region in phase space at
low energy. On the other hand, the presence of the slow
diffusion term ¢ * gives an average divergence rate of near-
by trajectories following a stretched exponential:
[[E@)]|=1£(0)]| exp[(z /7)*], with T a constant. Such a
law suggests an intermittent diffusion in phase space due
to the existence of random trappings of the trajectories
with a hierarchical distribution of trapping times (see the
first of Ref. [14]); finally, at ¢ >2X 10% a “big stochastic
sea” is reached and A, begins to fluctuate around some
nonvanishing value.

Let us now look at Fig. 7(b), where the number of
times N7 )(¢) that R(q) <0 is plotted versus time for the
same parameters and initial condition of Fig. 7(a). One
immediately realizes that (i) even with a much shorter in-
tegration time it is unambiguously evident that chaos is
present, and (ii) the above-mentioned intermittent
diffusion shows up in a very simple way; in fact, the stair-
case structure of N{7)(¢) is very pronounced: long flat
pieces corresponding to finite amplitude oscillations of
nearby trajectories alternating with jumps corresponding

to regions of exponential instability of the dynamics. In
the language of resonances, it is reasonable to think that
each plateau appears when diffusion occurs along reso-
nances, and that the jumps correspond to the crossing of
resonances.

Even though the integration time of Fig. 7(b) is far
from being sufficient to get a stabilized average of A(z),
the information about chaoticity of the dynamics is neat.
In other words, R(§) seems to convey more information
than the largest eigenvalue of #(V), i.e., than numerical
Lyapunov exponent A;. In the light of Eq. (53) this state-
ment might be reasonable, in fact R(q) contains other in-
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FIG. 6. FPU model. (a) Synopsis of A(e) (full circles) and
A(e) (open squares) for FPU. Their crossovers are in very good
agreement and define €, of the SST. (b) Synopsis of A(e) (full
squares) and A(e) (open circles), qualitatively showing that also
A,(¢g) is sensitive to the SST.
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gredients besides (V).

In a first rough approximation, the results reported in
Figs. 2—4 and 7(b) suggest a picture of the dynamics
where chaoticity is due to the existence of “scattering”
regions on M or TM. These ‘“scattering” regions are
those subsets of M where R <0 or R(q)<0, and where
initially close trajectories undergo an exponential in-
crease of the norm of their separation. These scattering
regions seem rather small in size and at large scale they
appear as rather uniformly distributed. We mention that
the fluctuations of the local density of these scattering re-
gions could provide a geometrical picture for the inter-
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FIG. 7. FPU model. (a) Relaxation of the largest Lyapunov
exponent at E=0.862 (Ine=—35). The reference dotted line
shows a ¢ ™! behavior (typical of ordered motion). Random ini-
tial conditions. (b) At the same energy and with the same ran-
dom initial conditions, the number of times that Ricci curvature
is found negative is reported as a function of time.

mittent fluctuations in Hamiltonian chaotic dynamics
that are phenomenologically described by generalized
Lyapunov exponents [34].

Let us remind that such a picture is derived within the
approximations performed on the Jacobi-Levi-Civita
equation in the preceding section. It is certainly possible
that the largest eigenvalue of the operator defined in Eq.
(42) happens to be negative in regions of larger measure
than those where R <0 or R(q) <0. Moreover, also the n
equations (d2£'/ds?)+1;,E'=0, obtained by diagonaliz-
ing Eq. (43), are most probably subject to parametric
modulation, i.e., A;;=A;(t), because of the already men-
tioned “bumpiness” of M. Hence, even when all the A,
are positive, still an unstable dynamics could be obtained,
provided that the conditions for parametric resonance are
fulfilled.

It is worth noticing that, in the average, both the scalar
and Ricci curvatures are positive. These quantities enter
into the definition of GCI after the already reminded ap-
proximations. It was the scalar curvature [Eq. (54)] that
drew Krylov’s attention in the cited work of Ref. [16].
Krylov heuristically inferred the mixing behavior of a
Hamiltonian system from the condition that R <0 almost
everywhere. However, this is an oversimplification of the
problem: we have already seen that another active source
of chaos is provided by the bumpiness of the ambient
manifold through parametric resonance, regardless of the
sign of the curvature.

Moreover, it is not worth paying too much attention to
scalar curvature in the study of chaos. In fact, let us con-
sider the example of (M X Rz,gE) as ambient manifold for
the dynamics, it always holds true that R =0, whereas
this is not the case of R(q). Another drawback of the
scalar curvature shows up in numerical simulations at
large n (up to n =10000) where an “abnormal” increase
is found of the number of regions where R <O0; this hap-
pens even at small € when chaos—detected by other
means—is weak. At variance, R(q) is exempt form this
problem; this is also because R(q) contains more infor-
mation than R: it is obtained by one instead of two
averagings and involves n?/2 instead of n terms, besides,
it is built up of a nontrivial saturation of the off-diagonal
components of R, with the velocities. However, here the
situation is reversed: some preliminary tests at increasing
n and constant € give a corresponding increase of the
mean free path between two successive encounters of
scatterers [regions of :(q) <0]. A systematic investiga-
tion about the n dependence of our results is beyond the
aims of the present paper: the previous remarks aim at
warning again about the partial loss of information which
is produced by any averaging of Eq. (35). A4 priori only
the eigenvalues of the operator Q in Eq. (43) and their
time averages could keep all the necessary information to
provide GCI’s free of the above-mentioned problems.
Nevertheless, in what follows a simple way is shown to
recover some of the lost information.

We wish to find some quantity that, being easily com-
putable, can detect the existence of a SST, can discrim-
inate among integrable and nonintegrable systems and,
obviously, has a geometrical meaning. In other words,
we seek some major change in the geometry of (M,g;)
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that could be interpreted as a geometrical mark of the
SST.
The simplest choices at hand are the following:
1

Py T a
R—mfo diR[q°(1)] (79)

and
_ 1 T a L .k
€, —-anO dtRy; [q%()]1g'(e)g (), (80)

ie., R and @, respectively, measure the overall scalar and
Ricci curvatures by averaging along a trajectory and re-
gardless of the sign of the curvature. The striking result
is that also R (¢) and G (¢) neatly detect the SST.

In Fig. 8 R(¢) is reported in the case of the FPU mod-
el. The convergence in time of Ris very fast and with
small fluctuations. For instance, at E=4239 (Ine=3.5)
the convergence time is ~300, and at E=36.6
(Ine=—1.25) the convergence time is ~4000. Both
R(e) and G(e) are computed together with A (which has
a slower relaxation rate), thus the averaging time T is so
long that the values of R(e) and G(g) are obtained with
high precision. At e<g,, it is found that R(e)~e 2,
while at € > ¢, a sharp transition shows up to a less steep
power law; here €, is in perfect agreement with the criti-
cal energy density of the SST mentioned above. The bro-
ken line on the background is obtained by setting u=0.
Also at small € the numbers R,_y(e) and R(e) are
different, but this difference cannot be appreciated in Fig.
8 for graphical reasons. Notice that R is a decreasing
function of €, while the instability exponent
X=2RW?/n(n—1) is an increasing function of .

A similar result, though more pronounced, is obtained
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FIG. 8. FPU model. Time averages of the scalar curvature
[Eq. (79)] — InR, are reported vs Ine. The triangles, joined by
the dotted line, refer to £ =0 (harmonic limit). The open circles
refer to the chaotic case (u+0) and show the existence of the
SST at the good ¢.
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FIG. 9. FPU model. Time averages of the Ricci curvature
[Eq. (80)] InG are reported vs Ine (open circles). The triangles
refer to the harmonic limit (#=0). The existence of the SST is
here neatly evident.

through G(e) and is reported in Fig. 9 for the FPU mod-
el. Also in this case, é) is quickly convergent with small
fluctuations. The convergence rates and fluctuation am-
plitudes are those of R. The critical value of the thresh-
old, defined by the crossing of the two asymptotes, coin-
cides with the preceding value obtained either with A (g)
or with A(g) or with R (g).

By setting ©=0, G (&) is found perfectly constant, as
shown in Fig. 9. This provides a clear-cut criterion to
recognize regular and chaotic dynamics. The asymptotic
convergence of G(g) to @#zo(s) at small € is indicative of
weak chaoticity, not of absence of chaos; as already dis-
cussed, chaoticity is always present.

In Fig. 10 G(¢) and @,u=0(8) are reported in the case of
¢* model. A qualitatively similar result to that of the
FPU case is obtained. With the chosen values of m? and
U, €, is found smaller than in the FPU case, in agreement
with what is given by A;(g) [14]. In Ref. [14], the esti-
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FIG. 10. ¢* model. Time averages of the Ricci curvature
[Eq. (80)] InG are reported vs Ine (open circles). The triangles
refer to the harmonic limit (£=0). Also in this case the SST is
clearly detected.
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mate of €., in the case of the <p4 model, is lower than the
value given by Fig. 10, but the data of Ref. [14] are abso-
lutely compatible with the sharper result of Fig. 10.
Another qualitative agreement between G(¢) and A(g)is
found by comparing the results for FPU and <p4 models.
In fact, in the <p4 case, the transition occurs between
A ~€3* and A,~€?3, ie., it is less sharp than in the
FPU case where A(g) passes from A,~¢g? to A;~e*’%;
similarly, G(e) passes from €, in both cases, to £!/° (cp4
model) and to £!/? (FPU model).

In Fig. 11 G(e) is reported for the Toda lattice. As in
the case of harmonic oscillators G (&) turns out perfectly
constant, so confirming that a simple but nontrivial possi-
bility exists to recover some of the information lost in the
averaging of Eq. (35). The & dependence of the geometri-
cal quantities chosen provides this retrieval of informa-
tion.

Even though we have only numerical evidence for the
following statement, nonetheless we can tentatively sug-
gest that if

dG(¢) _
de

then we are dealing with an integrable system. An
equivalent statement holds for d[e*R (¢)]/de=0.

The neat results obtained with R and G seem to mirror
some deeper relationship between geometrical and
dynamical properties of Hamiltonian flows. In the next
section we shall briefly comment on this point.

Finally, let us come to the comparison between dynam-
ic and static averages. Both R and G are well suited for
static averaging, which is not the case, for example, of A,

0, (81)

which has a much slower convergence rate. Static
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FIG. 11. Toda lattice. Integrable case. Time averages of the
Ricci curvature [Eq. (80)] InG are reported vs Ine (open circles).
The result is the same as in the case of harmonic limits of FPU
and ¢* models.

averaging is defined as in Eq. (65) by
(R >=Q._1f2EdaER(q”)/n(n —1)

=9‘1f I1 dg:dq;6(H'(q¢,¢*)—E)R(g*)/n(n—1)

i=1

(82)
and
(G)ZQ_lszdaEth(q")qhqk/n
o~ f[ldq,.dq,.a(ﬂ'(q“,q")—E)
X R, (g))q"g*/n . (83)

Numerical computation of these surface integrals has
been performed by a standard Monte Carlo technique
adapted to the constraint: 8(H'(¢%¢°)—E) [35]. To
make the results more reliable, two different algorithms
have been used. The first one [35] employs a Maxwellian
demon that exchanges energy with the system under in-
vestigation. The total energy E=E,+E, is kept con-
stant, whereas the demon energy E; and the system ener-
gy E vary. Only positive values of E,; are allowed. Once
the equilibrium is established, if the demon is “very
small,” then the most likely value of E; is very close to E.
In analogy with a conventional Monte Carlo—-Metropolis
simulation, each variable g; and ¢; is systematically
varied and the energy of the new configuration is com-
pared with the preceding one. If energy is gained then
the system moves to the new configuration, and the ener-
gy is given to the demon. If energy is required by the up-
date, then the system moves only if the demon has
enough energy, and the energy needed is taken from the
demon. If the demon has not enough energy, no change
occurs.

The second algorithm consists of a Gaussian represen-
tation of the 8 function, i.e., exp[ —(H —E)*/T'], with T’
a parameter to be conveniently chosen. A new
configuration is accepted if its probability of occurrence,
computed by this Gaussian, is greater than a random
number extracted in the interval [0,1], otherwise, it is re-
jected.

In both cases a random initial configuration {q'?,q"’}
at equipartition, like in Eq. (76), is dynamically evolved
up to a time ¢ =1000 that ensures virialization. This is
done in order to initialize the Monte Carlo simulation
with a configuration that has both random velocities and
positions. The updating procedure is sequential (some
tests have been also made by choosing at random the
coordinates), and follows the simple scheme
q'i(k+1):q-i(k)+a‘/_€wk’ qi(k+1):qi(k)+a\/gw]; , (84)
where a is a numerical factor needing an empirical op-
timization, w, and w; are Gaussian random numbers
with zero mean and unit variance; and the factor Ve is
adopted as an empirical scaling with the energy density:
this turned out useful to keep a in a small range of work-
ing values.
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The above-described algorithms constrain the random
walk given by Eq. (84) only near a constant-energy sur-
face. Therefore, by a suitable correction of the coordi-
nates, all the accepted new configurations are projected
on the initial energy surface 25: H'(g%¢°)=E. The

procedure goes as follows. Define: x={x,,...,x,,}
={gy,.-.,9,41>---,4,}. If at the kth Monte Carlo
step x'¥ is a configuration such that xX¥’ €3, at the

(k+1)th Monte Carlo step the new configuration is in
general such that i(k+1)EZE+AE, therefore we compute
a correction Ax**D 50  that x*TD=gk*D
+Ax* Ve s, by simply projecting X**! on ;. This
is easily achieved by minimizing the Euclidean distance
2n
d2: 2 (Axi(k+1))2

i=1

with the constraint xX'* € 3 ;. Thus from

% | 9E oE & O0H
AE = ——Aq;,+—Ap; |= —Ax; , (85)
igl aql 1 apl pl igl a ; 1
we write
9 . 2n 2n OH
Ax; )P +A —Ax;—AE | |[=0; (86
alax, | 2 (A% Z 3y, A% ®6)
this gives Ax;=—1A(3H /dx;), so that introducing it
into Eq. (85), we get
A=— % (87)
2 ?
and finally
AR ‘a_H ]
ox;
Axi(k-H): 5 , (88)
EZn _aﬂ.
i=1 axi
X(k +1)
which are the corrections needed to project ¥ " on 3.

This correction scheme is added to both of the men-
tioned Monte Carlo (MC) algorithms and turns out to be
a simple and efficient way to generate a random walk on
any constant-energy surface £5. This random-walk sam-
ples =, on a set of points that is used to compute (R )
and (G ). In order to measure how the structure of =g
changes with energy, several computations are performed
at different values of E. Notice that (G ) measures the
total Ricci curvature of (M,g;) but it has not an
equivalent meaning for 2;: R(q) is only a function
defined on 2.

Let us now give some details about the numerical pa-
rameters used. Unless explicitly stated, things refer to
both algorithms.

If the parameter a is chosen too small, the diffusion
process on 2 is very slow and so is the convergence rate
of the averages. On the other hand, if « is large, the devi-
ations from X, are too wide; consequently, the accep-

tance rate of new configurations drops down and the pro-
jection technique becomes less precise. It has been
empirically found that the good values fall in the interval
[0.05,0.5]; the smaller ones are used at higher energies.
In the case of the demon algorithm, a=0.1 is optimal at
all the energies considered. The average acceptance rate
of the MC trials ranges from about 50% to about 35%
(see below). In the case of the Gaussian approximation of
the 8 function, the parameter I' is chosen according to
the empirical rule I'= ea’B, where B is varied in the inter-
val [1,100]; again larger B are used at higher energies.
Unfortunately the good choices of the parameters (see
below) give average acceptance rates of the MC trials of
abut 4%, which makes this method by far less efficient.

In both cases, energy is conserved by the projection
procedure, with a maximum relative error of 10~ 3. After
completion of one trial per particle on the whole set of
coordinates, each updated configuration is projected on
2 and so corrected, enters the set of configurations used
to compute the averages.

A simple criterion has been adopted to assess the relia-
bility of the MC averages: in any MC run also the aver-
age potential energy { ¥ )yc is computed, and then it is
compared with the analytically known value (V) [36].
In Ref. [36] ( V)., is computed in the canonical ensem-
ble for the FPU model; at » =128 the canonical mean is a
good approximation of the microcanonical one. The
average kinetic energy per particle provides the tempera-
ture. A priori different observables may have very
different convergence times (both dynamical and MC),
depending on their degree of smoothness on =5 [36]. For
instance, a quantity that depends on fluctuations like the
specific heat needs a much denser sampling than a quanti-
ty involving only simple and regular functions of the
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FIG. 12. FPU model. Relaxation of the Monte Carlo aver-
ages [Eq. (83)] of the Ricci curvature (G ) at E=3301. Com-
parison of the two methods used: demon algorithm (full line)
with @=0.1, and Gaussian representation of the & function
(dotted line) with «=0.1, B=1.
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coordinates. In particular, G and V have a qualitatively
comparable degree of regularity of their functional
dependences upon the coordinates [i.e., algebraic func-
tions of (g, +,;—4q,)].- So a good convergence of (V)¢
can be taken as the mark of a sufficient uniformity in the
sampling of =5 to make { G )¢ reliable.

A comparative example of the results obtained with
the two methods is given in Fig. 12. The agreement is
fairly good, though the demon algorithm is faster, yields
smaller fluctuations of the running average and makes
the convergence of (¥ )yc to (¥ )., quicker. The re-
sults obtained with the approximate 6 function algorithm
are mainly used to further confirm the reliability of the
output of the demon method.

To get a hold of the convergence rate and of the pre-
cision of the final results, in Fig. 13 three different exam-
ples are given of (G ) versus the number of MC steps.
They refer to E=3301, 737, and 22, that is, Ine=3.25,
1.75, and —1.75, respectively. The total number of
configurations involved in the averaging are around
28 000, 34 000, and 39 000, respectively; in all these cases
107 MC trials have been done, so from the abscissas of
the end points of the three curves one can immediately
figure out the acceptance rates.

The convergence of (R ) is faster: already with few
thousands of configurations a good approximation of the
final result is obtained. Instead of giving another picture,
where the graphical squeezing would hinder the apprecia-
tion of the excellent agreement between dynamic and
static averages, let us give a few examples. At E=6989,
348, and 47, that is, Inc=4, 1, and — 1, respectively, it is
found that R =0.2983X107% 0.4431X107% and
0.1922X 1072 for time averages and (R ) =0.297 X107,
0.445X107% and 0.191X1072 for MC averages (only
stabilized digits are given).
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FIG. 13. FPU model. Relaxation of the Monte Carlo aver-
ages (G ) obtained with the demon algorithm at E=3301, 737,
and 22 (from top to bottom).
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FIG. 14. FPU model. Comparison among dynamical and
static (time and Monte Carlo) averages of the Ricci curvature vs
€. Full squares and circles show the Monte Carlo averages in
the chaotic and harmonic cases, respectively. Open circles and
triangles represent time averages.

Finally, in Figs. 14 and 15 (G ) versus ¢ is reported for
FPU and ¢* models, respectively; a comparison is also
made with time averages of G. The striking result is that
dynamic and static averages are in excellent agreement.
Certainly this result is not obvious. It suggests that the
total Ricci curvature [i.e., its integral on (M,g;)] is relat-
ed to some deeper geometrical property which is respon-
sible for the regular or chaotic behavior of the geodesics
of M.

Both G and (G ) are computed on M with the condi-
tion that positions and momenta must belong to a given
section TM of TM, so the transitional behavior revealed
by G(e) and (G )(g) is ascribed to a rather abrupt change
of the structure of the constant-energy surfaces of TM at
some critical energy, which perhaps could mean that a
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FIG. 15. ¢* model. Comparison among dynamical and static
(time and Monte Carlo) averages of the Ricci curvature vs .
Full squares and circles show the Monte Carlo averages in
chaotic and harmonic cases, respectively. Open circles and tri-
angles represent time averages.



848 MARCO PETTINI 47

singular energy foliation of TM exists.

This fact deserves a lot of theoretical work about one-
parameter deformations of Riemannian metrics and the
corresponding integrability of the resulting geodesic
motions, whereas, for physical applications, we have al-
ready found—at least in principle—a method to com-
pute €, of the SST by a static algorithm: by averaging G
on the surfaces {3}, one has to find out at what energy
(G )(¢) displays its transition. This could be achieved in
several empirical ways. For instance, if the high-energy
behavior of (G )(g) can be approximated by some func-
tion {(Gyg )(e), and if (G )(e) refers to the case u=0,
then g, can be obtained by solving { Gy )(e)=(Gj ) (¢).
Another possibility consists in finding the € value at
which (d3(G )de*)=0. In fact, the function (d{G ) /de)
suddenly increases in the transition region, so its
inflection point can be used to define €.

IV. CONCLUSIONS

The central point of the present paper concerns the
practical use of elementary tools of Riemannian
differential geometry to describe the origin of Hamiltoni-
an chaos. Riemannian geometry enters only in the study
of geodesic flows within the framework of ergodic theory,
but these are abstract flows that do not help very much in
understanding the chaotic properties of Hamiltonian
flows of physics. Here we have shown that the geometri-
cal approach is actually useful for these flows of physical
interest. In particular, it is possible to go beyond the usu-
al picture of homoclinic intersections to explain the ori-
gin of Hamiltonian chaos. This is done in a quite natural
way. In fact everything stems out of the variational for-
mulation of Newton’s law of dynamics. Then a classical
tool of Riemannian geometry is used to investigate the
stability properties of motion: the Jacobi-—Levi-Civita
equation for the geodesic spread. In particular, written
in the case of Eisenhart’s metric on M XR?, this yields
the equation for the tangent dynamics that is commonly
used to compute numerical Lyapunov exponents. Hence
a new interpretation is given to the meaning of the results
of the standard algorithm [30]. It turns out that there is
no need to invoke Oseledets’s theorem: numerical
Lyapunov exponents are not true Lyapunov exponents,
nevertheless, they have their own well-defined meaning.

The approach adopted in this paper is naturally non-
perturbative. In fact, no references to nearly integrable
systems are made, and all the equations or quantities used
are well defined at any energy. Moreover, there is no
need in action-angle coordinates because natural coordi-
nates and velocities are used. This is an important ad-
vantage for the overwhelming majority of physical sys-
tems for which the computation of action-angle coordi-
nates is long and tedious already at low perturbative or-
der and at small n. In any case, action-angle coordinates
belong to the machinery of CPT and therefore these are
powerful within the validity limits of CPT.

Our investigation of Hamiltonian chaos by Riemanni-
an geometry has been motivated by the need of finding an
explanation for the existence of the SST. As already dis-
cussed, this cannot be understood within the framework

of CPT. In the present paper we have successfully re-
phrased the problem in geometrical terms. Of course,
this is not yet a deep mathematical explanation, but this
is much more than pure phenomenology. In fact, it
opens a new perspective of research for high-dimensional
Hamiltonian flows by revealing that some nontrivial
structure related with the energy foliation of TM is re-
sponsible for the existence of a critical energy at which a
major geometrical change occurs. Correspondingly, the
topology of the phase-space paths is deeply affected. This
is at the origin of weak and strong chaos, and of slow and
fast diffusion in phase space. A more stringent
mathematical definition of ‘“geometrical change” is neces-
sary. One could wonder whether some topological
change—defined through the wusual homological
approach—might be related with the existence of the
SST. Let us first consider (M,g;). We can expect two
opposite situations: chaos will appear on manifolds of
complex topology (loosely speaking some n-dimensional
analog of high genus); ordered motion will require trivial
homology. The former could be a sufficient topological
condition to make chaos, the latter could be a necessary
condition for integrability. From general theorems [31],
we know that if :(q) > O for each qE M, and if M is com-
pact and conformally flat [which is the case of (M,g;)],
then M is a homology sphere. This seems in agreement
with the numerical results obtained for integrable sys-
tems. However, even smooth deformations of the metric
of a manifold—whose geodesics are stable—can yield
dramatic effects on their stability because geodesics are
not preserved by difffomorphisms of the underlying man-
ifold. This fact and the above reported results about
parametric resonance due to the “bumpiness” of (M,g;)
suggest that we can have chaos also on a homologically
trivial manifold. In other words, trivial homology is cer-
tainly not a sufficient condition for integrability, and if we
think of geodesic flow of the usual torus immersed in R3,
we see that trivial homology is also not necessary for in-
tegrability. Regular and chaotic motions depend on the
differentiable structure defined by the metric of the mani-
fold. Thus geometrical rather than topological properties
are relevant, and so the necessity appears for a deeper
characterization of geometrical properties and their
changes. The use of differential invariants [27] and of the
corresponding generalized cohomological complexes [37]
and characteristic classes are very promising mathemati-
cal concepts and methods of tackling the above-discussed
problem.

Let us now briefly discuss the constant-energy surfaces
of TM. Also the tangent bundle TM of configuration
space can be equipped with a Riemannian metric. There
are many possibilities [38] of lifting the metric of the base
manifold M to TM. However, among the others, the so-
called Sasaki diagonal lift gg [39] is the most natural.
The manifold (TM,gg) is a Riemannian manifold. The
geodesics of (TMp,gs)—with suitable restrictions—are
the natural motions on a constant-energy surface of the
dual of phase space. In this case it is an open question
whether some topological change—in the above-
discussed sense—occurs at the SST.

The second of the two main concerns of the present
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work, as stated in the Introduction, is about finding an al-
gorithm to compute €, of the SST. By static averaging of
geometrical quantities, we find that something abruptly
changes in the geometry of the constant-energy surfaces
of TM, and this happens at the same energy of the SST.
The agreement between dynamic and static averages al-
lows a static computation (i.e., of the statistical-
mechanical kind) of the SST. Simplified criteria are sug-
gested to compute the critical energy density €,. Obvi-
ously, this point also deserves further work.

The results reported in this paper suggest that a
Riemannian description of Hamiltonian chaos is
worthwhile. Certainly the approach proposed here opens
many new problems. However, it has the great advan-
tage of bridging with a largely developed topic of
mathematics that could supply Hamiltonian dynamics
with new methods and results.

In Sec. Il it is only mentioned that differential
geometry of Finsler spaces could be of interest to Hamil-
tonian dynamics. This is a subject that deserves further
attention and investigation. Just to give examples of
physical systems requiring a Finslerian approach, notice
that conservative and velocity-dependent forces, like the
Lorentz force, are naturally described by Finsler spaces.
This is the case of systems subject to the action of electro-
dynamical interactions that naturally arise, for example,
in plasma physics problems [40]. Other interesting cases
(also in view of applications) are given by the problem of
diffusion of passive scalars in nonstationary Eulerian ve-
locity fields of fluids [41] or, equivalently, of diffusion of
charged particles in fusion plasmas in the guiding centers
approximation [42]. In both cases the equations of
motion are X =—9, U(x,y,?) and y =9, U(x,y,t), where

U(x,p,t) does not have a Newtonian structure; that is,
the kinetic part is lacking and so a Riemannian approach
is hindered, whereas the function A=1(xp—xy)
—U(x,y,q"tHg"*! provides a metrical function [Eq.
(14)] of the Finslerian kind.

To pursue the discussion of future developments, let us
mention that there is also another reason to study the
above-mentioned lift of (M,g;) to (TM,gg): to look for
new methods of describing phase-space diffusion. In fact,
in order to write down a chaotic diffusion equation, it is
necessary to study how a given volume of initial condi-
tions is ‘“‘geodesically advected” on TMg. The study of
chaotic diffusion in Hamiltonian systems has many im-
portant applications: the estimate of relaxation times of
nonequilibrium initial states in statistical-mechanical sys-
tems, understanding the diffusion mechanisms of passive
scalars in fluids or of charged particles in fusion plasmas,
just to give few examples of interest to theoretical and ap-
plied physics.
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